Transitivity of Bender–Knuth Moves on Standard and Semistandard Young Tableaux

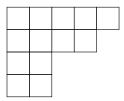
Sophia Liao mentor: Prof. Leonid Rybnikov

Proof School

October 12-13, 2024 MIT PRIMES Conference

1/15

Standard Young Tableaux



Standard Young Tableaux

1	3	5	9	10
2	4	7	11	
6	8			
12	13	•		

1	3	5	9	10
2	4	7	11	
6	8			
12	13	•		

1	3	5	9	10
2	4	7	11	
6	8			
12	13	•		

Applying t₂...

1	2	5	9	10
3	4	7	11	
6	8			
12	13	•		

Applying t₂...

1	2	5	9	10
3	4	7	11	
6	8			
12	13			

Applying t₆...

1	2	5	9	10
3	4	6	11	
7	8			
12	13	•		

Applying t₆...

1	2	5	9	10
3	4	6 11		
7	8			
12	13			

Applying to...

1	2	5	9	10
3	4	6	11	
7	8			
12	13			

Applying to...

...Does not result in a valid standard Young tableaux.

1	2	5	6	1	2	3	4
3	4	8		5	6	7	
7				8			

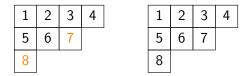
1	2	4	6	1	2	3	4
3	5	8		5	6	7	
7				8			

1	2	3	6	1	2	3	4
4	5	8		5	6	7	
7				8			

1	2	3	5	1	2	3	4
4	6	8		5	6	7	
7				8			

1	2	3	4	1	2	3	4
5	6	8		5	6	7	
7				8			

1	L	2	3	4	1	2	3	4
Ę	5	6	7		5	6	7	
8	3				8			



Yes! But is this always the case?

1	2	5	6	1	2	4
3	4			3	6	

5

1	2	5	6
3	4		

1	_	2	4	5
3	3	6		

 $\downarrow t_3$

1	2	5	6	1	2	3	5
3	4			4	6		

1	2	5	6
3	4		

1	2	4	5
3	6		

 $\downarrow t_3$

1	2	5	6
3	4		

1	2	3	5
4	6		

4

 $\downarrow t_4$

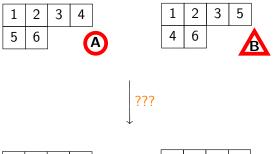
1	2	4	6	1	2	3	
3	5			5	6		

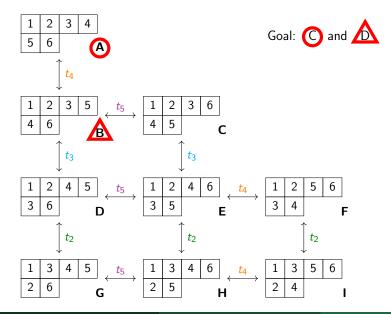
1	2	3	4
5	6		

1	2	3	5
4	6		

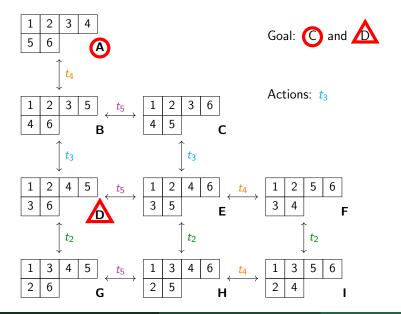
???

1	2	3	6	1	2	4	5
4	5			3	6		

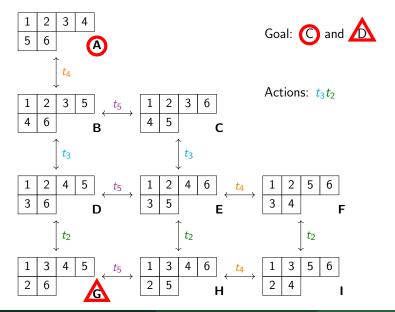




Sophia Liao

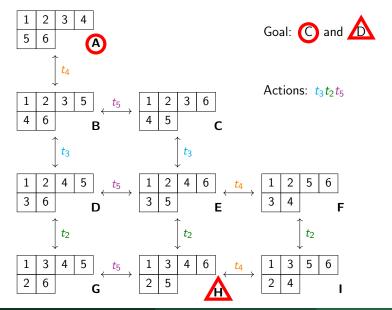


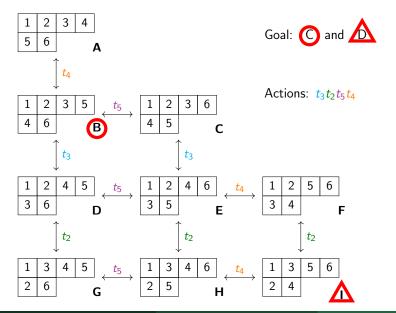
6/15

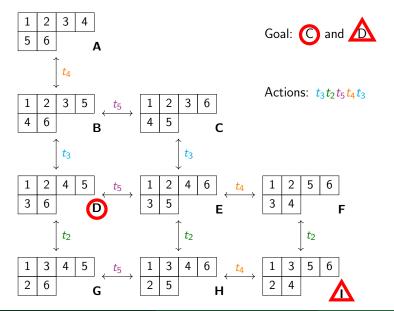


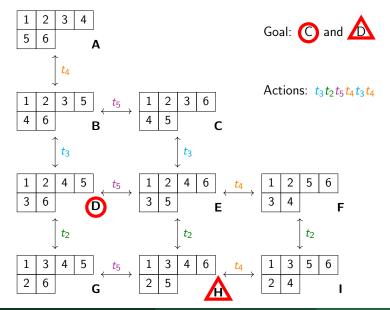
Sophia Liao

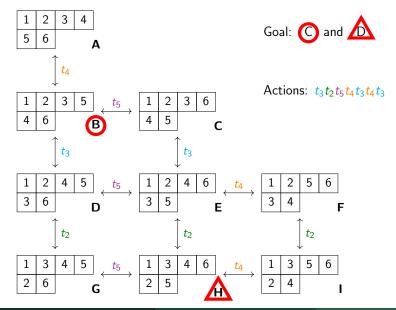
6/15

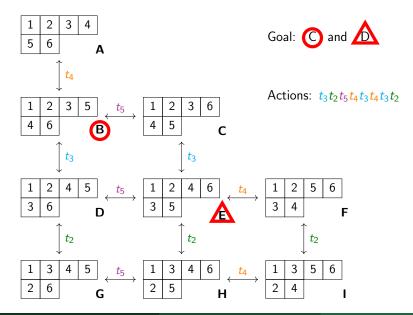


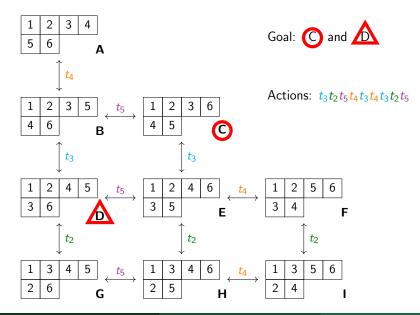












Theorem (Liao 2024)

Let λ be a partition which is not hook-shaped. If $\lambda^T \neq \lambda$, then there are 2 orbits for pairs of standard Young tableaux of λ under the Bender–Knuth moves.

Theorem (Liao 2024)

Let λ be a partition which is not hook-shaped. If $\lambda^T \neq \lambda$, then there are 2 orbits for pairs of standard Young tableaux of λ under the Bender–Knuth moves.

Theorem (Liao 2024)

Let λ be a partition which is not hook-shaped. If $\lambda^T = \lambda$, then there are 3 orbits for pairs of standard Young tableaux of λ under the Bender–Knuth moves.

Conjecture (Liao 2024)

Let λ be a partition which is not hook-shaped. If $\lambda^T \neq \lambda$, then there are 5 orbits for triples of standard Young tableaux of λ under the Bender–Knuth moves.

Conjecture (Liao 2024)

Let λ be a partition which is not hook-shaped. If $\lambda^T \neq \lambda$, then there are "as few orbits as possible" for n-tuples of standard Young tableaux of λ under the Bender–Knuth moves.

Conjecture (Liao 2024)

Let λ be a partition which is not hook-shaped. If $\lambda^T \neq \lambda$, then there are "as few orbits as possible" for n-tuples of standard Young tableaux of λ under the Bender–Knuth moves.

Conjecture (Liao 2024)

Let λ be a partition which is not hook-shaped. If $\lambda^T \neq \lambda$ and $SYT(\lambda) \geq n$, then there are

$$\sum_{\ell=1}^{k} \left(\frac{2^{k-\ell}}{(\ell-1)!} \cdot \sum_{i=0}^{\ell-1} (-1)^{i} \binom{\ell-1}{i} (\ell-i)^{k-1} \right)$$

orbits for n-tuples of standard Young tableaux of λ under the Bender–Knuth moves.

Sophia Liao

The columns strictly increase, but the rows are nondecreasing.

1	1	1	2	2	2	3	3	3
2	2	3	3	3				
4	4	5						
5	6							

The operation t_i swaps the numbers i and i + 1 if possible.

1	1	1	2	2	2	3	3	3
2	2	3	3	3				
4	4	5						
5	6							

The operation t_i swaps the numbers i and i + 1 if possible.

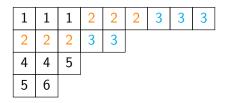
1	1	1	2	2	2	3	3	3
2	2	3	3	3				
4	4	5						
5	6							

The operation t_i swaps the numbers *i* and *i* + 1 if possible.

1	1	1	2	2	2	3	3	3
2	2	3	3	3				
4	4	5						
5	6							

1	1	1	2	2	2	3	3	3
2	2	3	3	3				
4	4	5						
5	6							

1	1	1	2	2	2	3	3	3
2	2	2	3	3				
4	4	5						
5	6							



Applying *t*₂...?

But what if we started with a different tableaux?

1	1	1	2	2	2	3	3	3
2	3	3	3	3				
4	4	5						
5	6							

1	1	1	2	2	2	3	3	3
2	2	2	2	3				
4	4	5						
5	6							

1	1	1	2	2	2	3	3	3
2	2	2	2	3				
4	4	5						
5	6							

1	1	1	2	2	2	3	3	3
2	3	3	3	3				
4	4	5						
5	6							

1	1	1	2	2	2	3	3	3
2	3	3	3	3				
4	4	5						
5	6							

1	1	1	2	2	2	3	3	3
2	3	3	3	3				
4	4	5						
5	6							

1	1	1	2	2	2	2	2	3
2	2	3	3	3				
4	4	5						
5	6							

1	1	1	2	2	2	2	2	3
2	2	3	3	3				
4	4	5						
5	6							

1	1	1	2	2	2	2	2	3
2	2	3	3	3				
4	4	5						
5	6							

1	1	1	2	2	2	2	2	3
2	2	3	3	3				
4	4	5						
5	6							

1	1	1	1	1	1	1	2	3
2	2	3	3	3				
4	4	5						
5	6							

Semistandard Young Tableaux Are Not Transitive

1	1	2	2
3	3		

1	2	2	2
3	3		

Semistandard Young Tableaux Are Not Transitive (at all)

1	1	2	2
3	3		

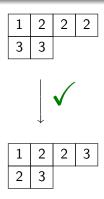
1	1	2	3
2	3		

Theorem (Liao 2024)

Let λ be a 2-row partition. Then there is a sequence of Bender–Knuth moves between two semistandard Young tableaux of λ if their set of counts are the same and includes a count of 1.

Theorem (Liao 2024)

Let λ be a 2-row partition. Then there is a sequence of Bender–Knuth moves between two semistandard Young tableaux of λ if their set of counts are the same and includes a count of 1.



- Prof. Leonid Rybnikov
- Dr. Tanya Khovanova
- Prof. Pavel Etingof, Dr. Slava Gerovitch, and André Lee Dixon
- MIT PRIMES

References I

BENDER, E. A., AND KNUTH, D. E.

Enumeration of plane partitions.

Journal of Combinatorial Theory, Series A 13, 1 (Jul 1972), 40-54.

BERENSTEIN, A. D., AND KIRILLOV, A. N.

Groups generated by involutions, gelfand-tsetlin patterns, and combinatorics of young tableaux.

Algebra i Analiz, 7 (1995), 92–152.

Borodin, M.

The orbits of the action of the cactus group on arc diagrams, 2023.

CHMUTOV, M., GLICK, M., AND PYLYAVSKYY, P.

The berenstein-kirillov group and cactus groups. Journal of Combinatorial Algebra 4, 2 (Jun 2020), 111–140.

Fulton, W.

Young tableaux: With applications to representation theory and geometry. Cambridge University Press, 2003.

15 / 15